

 Navigation

 	
 index

 	
 next |

 	Universal Binary JSON 0.8 documentation

Universal Binary JSON

JSON [http://json.org] has become a ubiquitous text-based file format for data interchange.
Its simplicity, ease of processing and (relatively) rich data typing made it a
natural choice for many developers needing to store or shuffle data between
systems quickly and easy.

Unfortunately, marshaling native programming language constructs in and out of
a text-based representations does have a measurable processing cost associated
with it.

In high-performance applications, avoiding the text-processing step of JSON can
net big wins in both processing time and size reduction of stored information,
which is where a binary JSON format becomes helpful.

	Specification
	Data Format

	Value Types
	JSON

	Universal Binary JSON

	Container Types
	JSON

	Universal Binary JSON

	Streaming Types
	No-Op Type

	Unknown-Length Containers

	Size Requirements
	Size Reduction Tips

	Endianness

	MIME Type

	File Extension

	Best Practices
	Handling huge Numbers

	Type reference
	Numeric Types
	floats (32-bit)

	doubles (64-bit)

	String Encoding

	Arrays & Objects

	Support for ‘huge’ Numeric Type

	Optimized Storage Size

	noop and Streaming Support

	Examples

	Libraries
	D

	Java

	.NET

	Node.js

	Python

	Thanks

Why UBJSON?

Attempts to make using JSON faster through binary specifications like
BSON [http://bsonspec.org], BJSON [http://bjson.org] or Smile [http://wiki.fasterxml.com/SmileFormat] exist, but have been rejected [https://issues.apache.org/jira/browse/COUCHDB-702]
from mass-adoption [http://bsonspec.org/#/implementation] for two reasons:

	Custom (Binary-Only) Data Types:
Inclusion of custom data types that have no ancillary in the original JSON
spec, leaving room for incompatibilities to exist as different implementations
of the spec handle the binary-only data types differently.

	Complexity: Some specifications provide higher performance or smaller
representations at the cost of a much more complex specification [http://wiki.fasterxml.com/SmileFormatSpec],
making implementations more difficult which can slow or block adoption. One of
the key reasons JSON became as popular as it did was because of its ease of
use.

BSON, for example, defines types for binary data, regular expressions,
JavaScript code blocks and other constructs that have no equivalent data type in
JSON. BJSON defines a binary data type as well, again leaving the door wide open
to interpretation that can potentially lead to incompatibilities between two
implementations of the spec and Smile, while the closest, defines more complex
data constructs and generation/parsing rules in the name of absolute space
efficiency.

The existing binary JSON specifications all define incompatibilities or
complexities that undo the singular tenant that made JSON so successful:
simplicity.

JSON’s simplicity made it accessible to anyone, made implementations in every
language available and made explaining it to anyone consuming your data
immediate.

Any successful binary JSON specification must carry these properties forward for
it to be genuinely helpful to the community at large.

This specification is defined around a singular construct used to build up and
represent JSON values and objects. Reading and writing the format is trivial,
designed with the goal of being understood in under 10 minutes (likely less if
you are very comfortable with JSON already).

Fortunately, while the Universal Binary JSON specification carriers these
tenants of simplicity forward, it is also able to take advantage of optimized
binary data structures that are (on average) 30% smaller than compacted JSON and
specified for ultimate read performance; bringing simplicity, size and
performance all together into a single specification that is 100% compatible
with JSON.

Why not JSON+gzip?

On the surface simply gzipping your compacted JSON may seem like a valid (and
smaller) alternative to using the Universal Binary JSON specification, but there
are two significant costs associated with this approach that you should be aware
of:

	At least a 50% performance overhead [http://www.cowtowncoder.com/blog/archives/2009/05/entry_263.html] for processing the data.

	Lack of data clarity and inability to inspect it directly.

While gzipping your JSON will give you great compression, about 75% on average,
the overhead required to read/write the data becomes significantly higher.
Additionally, because the binary data is now in a compressed format you can no
longer open it directly in an editor and scan the human-readable portions of it
easily; which can be important during debugging, testing or data verification
and recovery.

Utilizing the Universal Binary JSON format will typically provide a
30% reduction in size and store your data in a read-optimized format offering
you much higher performance than even compacted JSON. If you had a usage
scenario where your data is put into long-term cold storage and pulled out in
large chunks for processing, you might even consider gzipping your
Universal Binary JSON files, storing those, and when they are pulled out and
unzipped, you can then process them with all the speed advantages of UBJ.

As always, deciding which approach is right for your project depends heavily on
what you need.

Goals

The Universal Binary JSON [http://ubjson.org] specification has 3 goals:

	Universal Compatibility

Meaning absolute compatibility with the JSON spec itself as well as only
utilizing data types that are natively supported in all popular programming
languages.

This allows 1:1 transforms between standard JSON and Universal Binary JSON as
well as efficient representation in all popular programming languages without
requiring parser developers to account for strange data types that their
language may not support.

	Ease of Use

The Universal Binary JSON specification is intentionally defined using a
single core data structure to build up the entire specification.

This accomplishes two things: it allows the spec to be understood quickly and
allows developers to write trivially simple code to take advantage of it or
interchange data with another system utilizing it.

	Speed / Efficiency

Typically the motivation for using a binary specification over a text-based
one is speed and/or efficiency, so strict attention was paid to selecting
data constructs and representations that are (roughly) 30% smaller than their
compacted JSON counterparts and optimized for fast parsing.

Indices and tables

	Index

	Search Page

 Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Universal Binary JSON 0.8 documentation

Specification

Data Format

The Universal Binary JSON specification utilizes a single binary tuple to
represent all JSON data types (both value and container types):

<type, 1-byte char>[<length, 1 or 4-byte integer>][<data>]

Each element in the tuple is defined as:

	type
	A 1-byte ASCII char used to indicate the type of the data following it.

	A single ASCII char was chosen to make manually walking and debugging
data stored in the Universal Binary JSON format as easy as possible
(e.g. making the data relatively readable in a hex editor).

	length (OPTIONAL)
1-byte or 4-byte length value based on the type specified. This allows
for more aggressive compression and space-optimization when dealing with
a lot of small values.
	1-byte: An unsigned byte value (0 to 254) used to indicate the
length of the data payload following it. Useful for small items.

	4-byte: An unsigned integer value (0 to 2,147,483,647) used to
indicate the length of the data payload following it. Useful for larger
items.

	data (OPTIONAL)
A run of bytes representing the actual binary data for this type of value.

In the name of efficiency, the length and data fields are optional depending on
the type of value being encoded. Some value are simple enough that just writing
the 1-byte ASCII marker into the stream is enough to represent the value
(e.g. null) while others have a type that is specific enough that no length is
needed as the length is implied by the type (e.g. int32).

The specifics of each data type will be spelled out down below for more clarity.

The basic organization provided by this tuple (type-length-data) allows each
JSON construct to be represented in a binary format that is simple to read and
write without the need for complex/custom encodings or null-termating bytes
anywhere in the stream that has to be scanned for or references resolved.

Value Types

This section describes the mapping between the 5 discrete value types from the
JSON specification into the Universal Binary JSON format.

JSON

The JSON specification defines 7 value types:

	string

	number

	object (container)

	array (container)

	true

	false

	null

Of those 7 values, 2 of them are types describing containers that hold the 5
basic values. We have a separate section below for looking at the 2 container
types specifically, so for the time being let’s only consider the following 5
discrete value types:

	string

	number

	true

	false

	null

Most of these types have a 1:1 mapping to a primitive type in most popular
programming languages (Java, C, Python, PHP, Erlang, etc.) except for number.
This makes defining the types for the 4 easy, but let’s take a closer look at
how we might deconstruct number into its core representations.

Number Type

In JavaScript, the Number [http://people.mozilla.org/~jorendorff/es5.html#sec-8.5] type can represent any numeric value where as many
other languages define numbers using 3-6 discrete numeric types depending on the
type and length of the value being stored. This allows the runtime to handle
numeric operations more efficiently.

In order for the Universal Binary JSON specification to be a performant
alternative to JSON, support for these most common numeric types had to be added
to allow for more efficient reading and writing of numeric values.

number is deconstructed in the Universal Binary JSON specification and defined
by the following signed numeric types:

	byte (8-bits, 1-byte)

	int16 (16-bits, 2-bytes)

	int32 (32-bits, 4-bytes)

	int64 (64-bits, 8-bytes)

	float (32-bits, 4-bytes)

	double (64-bits, 8-bytes)

	huge (arbitrarily long, UTF-8 string-encoded numeric value)

Trying to maintain a single number type represented in binary form would have
lead to parsing complexity and slow-downs as the processing language would have
to further inspect the value and map it to the most optimal type.
By pre-defining these different numeric types directly in binary, in most
languages the number can stay in their optimal form on disk and be deserialized
back into their native representation with very little overhead.

When working on a platform like JavaScript that has a singular type for numbers,
all of these data types (with the exception of huge) can simply be mapped back
to the number type with ease and no loss of precision.

When converting these formats back to JSON, all of the numeric types can simply
be rendered as the singular number type defined by the JSON spec without issue;
there is total compatibility!

Value Type Summary

Now that we have clearly defined all of our (signed) numeric types and mapped
the 4 remaining simple types to Universal Binary JSON, we have our final list of
discrete value types:

	null

	false

	true

	byte

	int16

	int32

	int64

	float

	double

	huge

	string

Now that we have defined all the types we need, let’s see how these are actually
represented in binary in the next section.

Universal Binary JSON

The Universal Binary JSON specification defines a total of 13 discrete value
types (that we saw in the last section) all delimited in the binary file by a
specific, 1-byte ASCII character (optionally) followed by a length and
(optionally) a data payload containing the value data itself.

Some of the values (null, true` and false) are specific enough that
the single 1-byte ASCII character is enough to represent the value in the format
and they will have no length or data section.

All of the numeric values (except huge) automatically imply a length by
virtue of the type of number they are. For example, a 4-byte int32 always
has a length of 4-bytes; an 8-byte double always requires 8 bytes of data.

In these cases the ASCII marker for these types are immediately followed by the
data representing the number with no length value in between.

Because string and huge are potentially variable length, they contain all 3
elements of the tuple: type-length-data.

This table shows the official definitions of the discrete value types:

	Type
	Size
	Marker
	Length?
	Data?

	null
	1-byte
	Z
	No
	No

	true
	1-byte
	T
	No
	No

	false
	1-byte
	F
	No
	No

	byte
	2-bytes
	B
	No
	Yes

	int16
	3-bytes
	i
	No
	Yes

	int32
	5-bytes
	I
	No
	Yes

	int64
	9-bytes
	L
	No
	Yes

	float (32-bit)
	5-bytes
	d
	No
	Yes

	double (64-bit)
	9-bytes
	D
	No
	Yes

	huge (number)
	2-bytes
+ byte length of string
	h
	Yes
	Yes
if non-empty

	huge (number)
	5-bytes
+ byte length of string
	H
	Yes
	Yes,
if non-empty

	string
	2-bytes
+ byte length of string
	s
	Yes
	Yes,
if non-empty

	string
	5-bytes
+ byte length of string
	S
	Yes
	Yes,
if non-empty

Note

The duplicate (lowercased) h and s types are just versions of those
types that allow for a 1-byte length (instead of 4-byte length) to be used for
more compact storage when length is <= 254.

With each field of the table described as:

	Type

	The binary value data type defined by the spec.

	Size

	The byte-size of the construct, as stored in the binary format. This is not
the value of the length field, just an indicator to you (the reader) of
approximately how much space writing out a value of this type will take.

	Marker

	The single ASCII character marker used to delimit the different types of
values in the binary format. When reading in bytes from a file stored in
this format, you can simply check the decimal value of the byte
(e.g. 'A' = 65) and switch on that value for processing.

	Length?

	Indicates if the data type provides a length value between the ASCII marker
and the data payload.

	Many of the data types represented in the binary format either don’t have a
length (null, true or false) or their types (e.g. the numeric
values) are specific enough that the length is implied.

	When specifying the length for a string or huge value (UTF-8 encoded), the
length must represent the number of bytes of the UTF-8 string and not
the number of characters in the string.

Note

For example, English typically uses 1-byte per character, so the string
“hello” has a length of 5. The same string in Russian is “привет” with a
byte length of 12 and in Arabic the text becomes “مرحبا” with a byte length
of 10.

	Data?

	Indicates if the data type provides a data payload representing the value.

	Most types except for null, true and false provide a data payload
indicating their value.

	Variable-length types like string and huge do not provide a data
payload when they are empty (i.e. length of 0).More specifically, if you are
writing a parser for the Universal Binary JSON format and you encounter a
string of length 0, you know the very next byte is an ASCII marker for
another value since the string has no data payload.

Note

Using Numeric Types

It is always recommended to use the smallest numeric type that fits your
needs. For data with a large amount of numeric data, this can cut down the
size of the payloads significantly (on average a 50% reduction in size).

All numeric types are signed.

Numeric values of infinity are encoded as a null (Z) value.
(See ECMA [http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf], See JSON presentation [http://json.org/json.ppt])

64-bit Integers

While almost all languages native support 64-bit integers, not all do
(e.g. C89 and JavaScript (yet [http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion&s=int64])) and care must be taken when encoding 64-bit
integer values into binary JSON then attempting to decode it on a platform
that doesn’t support it.

If you are fully aware of the platforms and runtime environments your binary
JSON is being used on and know they all support 64-bit integers, then you are
fine.

If you are trying to deserialize 64-bit integers in a client’s browser in
JavaScript or another environment that does not support 64-bit integers, then
you will want to take care to skip them in the input or have the client
producing them encode them as double or huge values if that is easier to
handle.

Alternatively you might consider encoding your 64-bit values as doubles if you
know you are going from the server to a client JavaScript environment with the
binary-encoded information.

32-bit Floats

All 32-bit float values are written into the binary format using the
IEEE 754 single precision floating point format [http://en.wikipedia.org/wiki/IEEE_754-1985], which is the following
structure:

	Bit 31 (1 bit) – sign

	Bit 30-23 (8 bits) – exponent

	Bit 22-0 (23 bits) – fraction (significand)

64-bit Doubles

All 64-bit double values are written into the binary format using the
IEEE 754 double precision floating point format [http://en.wikipedia.org/wiki/Double_precision_floating-point_format#Double_precision_binary_floating-point_format], which is the following
structure:

	Bit 63 (1 bit) – sign

	Bit 62-52 (11 bits) – exponent

	Bit 51-0 (52 bits) – fraction (significand)

huge Numeric Type

The huge numeric type is a safe and portable way for representing
values > 64-bit by way of an UTF-8 encoded string. The format of this
string must adhere to the JSON number specification [http://json.org].

This allows huge numbers to be portable across all platforms and easily
converted to/from JSON as well as more robust handling on platforms that may
not support arbitrarily large numbers.

If you are working on a platform that has no support for huge numbers, please
see our Best Practices recommendation on how to handle
them.

It is considered a violation of this specification to store numeric
values <= 64-bit as a huge.

This decision was made in order to simplify the parsing logic required to
process the Universal Binary JSON specification; there is no need to
introspect huge values to see if they contain smaller numeric values when
mapping UBJSON types to native types of the runtime environment.

The huge type should only be used when you need to (safely and portably)
represent values > 64-bit.

UTF-8 Encoding

The JSON specification does not dictate a specific required encoding, it does
however use UTF-8 as the default encoding.

The Universal Binary JSON specification dictates UTF-8 [http://en.wikipedia.org/wiki/UTF-8] as the
required string encoding. This will allow you to easily exchange binary
JSON between open systems that all follow this encoding requirement.

Fortunately, this is ideal for a multitude of reasons [http://en.wikipedia.org/wiki/UTF-8#Advantages] like space efficiency
and compatibility across systems and alternative formats.

To further clarify the binary layout of these data types, below are some visual
examples of what the bytes would look like inside of a binary JSON file.

NOTE: []-block notation is used for readability, the [] characters
are not actually written out in the binary format.

	Binary Representation
	Description

	[Z]
	1-byte, null value

	[T]
	1-byte, true value

	[F]
	1-byte, false value

	[B][127]
	2-bytes, 8-bit byte value of 127

	[I][32427]
	5-bytes, 32-bit integer value of 32,427

	[L][12147483647]
	9-bytes, 64-bit integer value of
12,147,483,647

	[d][3.14159]
	5-bytes, 32-bit float value of 3.14159

	[D][72.38138221]
	9-bytes, 64-bit double value of
72.38138221

	[s][5][hello]
	7 bytes, string UTF-8 “hello” (English)

	[s][12][привет]
	14 bytes, string UTF-8 “hello” (Russian)

	[s][10][مرحبا]
	12 bytes, string UTF-8 “hello” (Arabic)

	[S][1024][...long string...]
	5 bytes + 1024 bytes for the long string

	[s][4][name][s][3][bob]
	6 + 5 bytes, equivalent of “name”: “bob”

Now that we have seen how the JSON data value types map to the binary format,
in the next section we will see how we can combine these values together into
the two container types (objects and arrays) to create complex object
hierarchies using the Universal Binary JSON format.

Container Types

In this section we will look at the 2 remaining JSON value types that we are
referring to as “container types”, namely object and array.

JSON

The two JSON container types are described as follows:

	object
	A construct containing 0 or more name-value pairings, where the name is
always a string and the value can be any valid value type including
container types themselves.

	array
	A flat list of values only, where the values can by any valid value type
including container types themselves.

	The JSON specification does not make it a requirement that the values in an
array are all of the same type and neither does the Universal Binary JSON
specification.

Note

Advanced: This can actually be to your benefit. Take for example an array
of int64 values, as you are writing them out to a file or a stream, you can
check the actual value of each int64 and depending on the value, encode
each one into the smallest possible numeric type (e.g. byte, int32, etc.).

This can lead to a significant size reduction (say 50% smaller) in
smaller numeric values!

Given these two constructs, let’s see how they are modeled in the Universal
Binary JSON format.

Universal Binary JSON

The two container types defined by JSON are modeled using the same tuple that
defines all of our other data structures in this specification so far with a
minor modification: the length value is considered a count of the child elements
the container holds. It does not mean the byte length of the child elements.

Note

Exactly what child element means depends on the container. In an object, a
single child element is a name-value pair; in an array, a child element is a
single value.

More specifically, the tuple stays exactly the same, it is just the meaning of
the center length element that changes:

<type, 1-byte char>[<length, 1 or 4-byte integer>][<data>]

All the code used to process the constructs defined by this specification stays
the same, but when an object or array construct are encountered, the code
needs to be aware that the length value is the child element count so it
can know when the scope of the container ends.

For example, if you have an object that contains 4 arrays of length 50, the
length argument for the object is 4 (because it contains the four arrays)
while the length argument for each array is 50 (because they each hold
50 elements).

Note

Unknown-length container types are also supported by the Universal Binary JSON
specification and are covered in detail in the Streaming
section of this document.

Additionally, the only optional field in the tuple for container types is
data, if the container is empty and contains no elements
(i.e. the length is 0) then there is no data segment.

All together, the definitions for the object and array container types looks
like this:

	Type
	Size
	Marker
	Length?
	Data?

	array
	2-bytes
+ byte length of string
	a
	Yes
	Yes,
if non-empty

	array
	5-bytes
+ byte length of string
	A
	Yes
	Yes,
if non-empty

	object
	2-bytes
+ byte length of string
	o
	Yes
	Yes
if non-empty

	object
	5-bytes
+ byte length of string
	O
	Yes
	Yes,
if non-empty

Note

array and object can also be specified in a more compact manner using
1-byte for the length when it is <= 254. Specifying a length of
255 for the 1-byte variants has a special meaning of length unknown
and is covered in more detail in the Streaming section of
the spec.

The details for each field are the same as described for the non-container
values in the previous section with the one caveat that length is a count of
child elements and not the number of bytes representing the contents of the
container.

Let’s look at a quick example of encoding an object, again using the handy
[]-notation we used before simply for readability (the [] chars are
not written out or part of the file format).

Consider the following JSON (30-bytes compacted):

{
 "id": 1234567890,
 "name": "bob"
}

Storing that object in the Universal Binary JSON format would look like this
(whitespace added for readability):

[o][2] 2 bytes
 [s][2][id][I][1234567890] 4 + 5 = 9 bytes
 [s][4][name][s][3][bob] 6 + 5 = 11 bytes

Our Universal Binary JSON format is 22 bytes, 27% smaller than our compacted
JSON!

Walking through our example above, using a word-journey this is what a parser might see and do:

	I see an o, so I know I am parsing an object and that the next byte is
the length (or count) for this object.

	I see a 2, so I know the object contains 2 elements that I must account
for to know when the object scope is closed (because we don’t use the
{ } brackets like JSON).

	I see an s, knowing how the name-value pairings inside of an object work,
I know this is the name portion of some upcoming value.

	I see an I, I know this is an int32 value and that it belongs to the
name I parsed in the previous step.

	I see another s, I know this is a new name-value pair and this is the
name portion.

	I see another s and know this is the value belonging to the name I just
processed.

	I have just parsed 2 values, so now I know the object scope is closed.

Encoding objects containing other objects would work identically except we would
have encountered another o or O marker and descended a level further
into a new object.

Let’s look at another example, this time a simple JSON array construct
(remember, they only contain values and not name-value pairs like objects).

This array is 48-bytes in compacted JSON:

[
 null,
 true,
 false,
 4782345193,
 153.132417549,
 "ham"
]

Storing the array in the Universal Binary JSON format would look like this
(whitespace added for readability):

[a][6] - 2 bytes
 [Z] - 1 byte
 [T] - 1 byte
 [F] - 1 byte
 [I][4782345193] - 5 bytes
 [D][153.132417549] - 9 bytes
 [s][3][ham] - 5 bytes

Our Universal Binary JSON format is 24 bytes or 50% smaller than the
compacted JSON!

Because the container types specify their total child element count, it is
easier and faster for parsers to know when the scope of a container has closed
or is still open waiting for more children (e.g. in the case of streaming over
the network). This is not unlike the high-performance Redis protocol [http://redis.io/topics/protocol].

This also has the added benefit of not needing any terminating values in the
binary that need to be scanned for to know when a container-scope is closed.
This way data can be read in chunks and not read-and-scanned byte-by-byte.

As was mentioned previously though, there are some cases where having an
unbounded container are important (for example, streaming content from a server
as it generates it on-the-fly).

In the next section we will take a look at the Universal Binary JSON constructs
that are optimized for streaming. Fortunately, there are only 3 and they are
just as easy as the constructs we have covered so far!

Streaming Types

The Universal Binary JSON specification is optimized for fast read-speed by
prefixing the byte-length of every construct to the front of it, this allows
parsers to digest entire chunks of the data stream at a time without scanning
for terminating byte values.

Unfortunately, this model of data becomes very expensive (and sometimes
impossible) to adhere to in a streaming-friendly environment where a server may
be generating UBJ formatted data on-the-fly and streaming it back in real time
to the client.

If the server had to adhere to the prefixed-length requirement of this
specification up until now, it would have to generate, buffer and count all the
elements in its reply before writing out the Universal Binary JSON so it could
correctly prefix the lengths to all the containers.

In this section of the specification we look at 1 new additional type to the
Universal Binary JSON specification that compliments our streaming scenario and
then two minor changes to the existing container types to enable easy and
efficient streaming with unknown-length support for our array and object
containers.

No-Op Type

The noop value stands for No Op or No Operation, it is a specific value
(like Z for null, T for true and F for false) that is useful
in streaming scenarios where an acknowledge of life needs to be sent between two
end points, but the confirmation being sent cannot change the meaning of the
data it is sent within.

The most common use for such a value type is as a keep-alive signal from a
server to the client; letting the client know the server is possibly operating
on a long-running job and is still alive, but just isn’t ready to send more data
yet.

The noop type is defined as follows:

	Type
	Size
	Marker
	Length?
	Data?

	noop
	1-byte
	N
	No
	No

Any parser code written to load the Universal Binary Spec needs to be aware that
encountering the N marker in files of any kind is valid and is merely useful
as a signal mechanism from producer to consumer to say “Hey, I am still alive.”,
the marker is intended to be safely ignored if the server or client doesn’t need
the acknowledgement.

In order for this keep-alive-esque construct to work, the specification had to
define a single byte value that had no meaning for the server and client to
exchange if needed, but caused no modification to the meaning of the data that
they are exchanging.

In code that handles streaming from a server, your handler for the noop type
might just reset a disconnect timer. In code that handles UBJ files, you would
simply ignore the noop marker when you encountered it in the file because it
would mean nothing.

Warning

The noop type is only defined to be used inside of an
unknown-length container. If you have a
container that clearly defines a child element count (length) it should not
contain a noop marker element.

Also, the noop type should never be sent inside of a value (e.g.
embedded inside of a string being streamed); it must only be written to the
stream between declared values.

If your interaction with the Universal Binary JSON format is primarily as a file
format, it is likely that you may never need to use the noop type; its value
becomes more apparent in long-lived, client-server, data-streaming scenarios.

Unknown-Length Containers

The Universal Binary JSON specification supports containers (array and
object) of unknown length to be specified when the producer of the binary data
cannot (efficiently) know in advance how many elements it is going to write out.

In these cases, the lowercased, 1-byte-length versions of array or object must
be used (a or o markers) with a length value of 0xFF (255) as well
as specifying an E terminator character after the last element in the
container.

The E type used to delimit the end of unknown-length containers is defined as
follows:

	Type
	Size
	Marker
	Length?
	Data?

	end
	1-byte
	E
	No
	No

Warning

Using a length of 0xFF with the uppercase, 4-byte-length versions of array
(A) and object (O) is not valid according to this specification.
You must use the 1-byte-length variants of the container types when specifying
an unknown length.

An example would look like this:

[a][255]
 [S][3][bob]
 [I][1024]
 [T]
 [F]
 [S][4][ham!]
[E]

The three key elements being the lowercased a marker, the length of 0xFF
(255) and the E marker at the end of the container.

Another example might look like this:

[o][255]
 [B][4]
 [D][21.786]
 [N]
 [Z]
 [h][27][131.098412283059e2371293452]
[E]

You might notice in the example above we injected a noop instruction right in
the middle, before the null. As mentioned in the No-Op Type
section, this is valid and can occur at any time while parsing the contents of
an unknown-length container.

If your parser has no need for recognizing the noop code (e.g. listening for
a keep-alive) then it can just be safely ignored and parsing continued
(hence the name “no-op”). It is up to the implementation to decide what to do
with the noop type.

You might be wondering how using a 1-byte E as a terminator to an unbounded
container can work and not get confused with say another E inside of a
string, the reason this works is because none of the discrete value types
(numeric, string, etc.) are of unknown length.

The lengths of all the values contained inside of the container are known and
must be read completely, doing so will guarantee that the E is only ever
encountered by itself as an element marker which is easily handled by parsing
code to know the scope of the container has been closed.

Size Requirements

The Universal Binary JSON specification tries to strike the perfect balance
between space savings, simplicity and performance.

Data stored using the Universal Binary JSON format are on average
30% smaller as a rule of thumb. As you can see from some of the examples in
this document though, it is not uncommon to see the binary representation of
some data lead to a 50% or 60% reduction in size.

The size reduction of your data depends heavily on the type of data you are
storing. It is best to do your own benchmarking with a comprehensive sampling
of your own data.

Warning

The Universal Binary JSON specification does not use compression algorithms to
achieve smaller storage sizes. The size reduction is a side effect of the
efficient binary storage format.

Size Reduction Tips

The amount of storage size reduction you’ll experience with the Universal Binary
JSON format will depend heavily on the type of data you are encoding.

Some data shrinks considerably, some mildly and some not at all, but in every
case your data will be stored in a much more efficient format that is faster to
read and write.

Below are pointers to give you an idea of how certain data may shrink in this
format:

	null, true and false values will compress 75%
(80% in the case of false)

	large numeric values (> 5 digits < 20 digits) will compress on average 50%.

	string values
* of length <= 254 stay the same size.
* of length > 254 are 3-bytes bigger per string.

	object and array values compress 1-byte-per-element.

One of the great things about the Universal Binary JSON format is that even
though most all your data will be represented in a smaller footprint, you still
get two big wins:

	A smaller data format means faster writes and smaller reads. It also means
less data to process when parsing.

	Binary format means no encoding/decoding primitive values to text and no
parsing primitive values from text.

Endianness

The Universal Binary JSON specification requires that all numeric values be
written in Big-Endian [http://en.wikipedia.org/wiki/Endianness] order.

MIME Type

The Universal Binary JSON specification is a binary format and recommends using
the following mime type:

application/x-ubjson

This was added directly to the specification in hopes of avoiding
similar confusion with JSON [http://stackoverflow.com/questions/477816/the-right-json-content-type].

File Extension

ubj is the recommended file extension [http://www.fileinfo.com/extension/ubj] when writing out files using the
Universal Binary JSON format (e.g. user.ubj).

The extension stands for “Universal Binary JSON” and has no known conflicting
mappings to other file formats.

Best Practices

Through work with the community, feedback from others and our own experience
with the specification, below are some of the best-practices collected into one
place making it easy for folks working with the format to find answers to the
more flexible portions of the spec.

Handling huge Numbers

Not every language supports arbitrarily long numbers greater than 64-bits
(represented by the huge data type), but many do.

If you are writing a library to read/write Universal Binary JSON and the
platform you are working with does not support them, we recommend throwing an
exception or returning an error to the caller, letting them know unsupported
data is contained in the file they are trying to parse.

If the library you are writing is meant to be a general-purpose parser and needs
to be more resilient than that, we recommend the following:

	Make the default behavior to throw an exception or return an error when the
unsupported huge data type is encountered.

	Provide an optional behavior to the parser (that must be specifically enabled
by the caller) that treats the huge value as a simple string and returns it
to the caller to handle (e.g. insert in a database) if they need it.

	Provide an optional behavior to the parser (again, that must be specifically
enabled by the caller) to simply skip unsupported values.

This implementation should give the user the most functional experience working
with your library and the Universal Binary JSON format while making it clear on
their particular platform some data types could cause trouble; this is preferred
to making the default operation to ignore the unsupported values.

 Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Universal Binary JSON 0.8 documentation

Type reference

The table below is a quick-reference for folks working closely with the
Universal Binary JSON format that want all the information at their finger tips:

	Type
	Size
	Marker
	Length?
	Data?

	null
	1-byte
	Z
	No
	No

	true
	1-byte
	T
	No
	No

	false
	1-byte
	F
	No
	No

	byte
	2-bytes
	B
	No
	Yes

	int16
	3-bytes
	i
	No
	Yes

	int32
	5-bytes
	I
	No
	Yes

	int64
	9-bytes
	L
	No
	Yes

	float (32-bit)
	5-bytes
	d
	No
	Yes

	double (64-bit)
	9-bytes
	D
	No
	Yes

	huge (number)
	2-bytes
+ byte length of string
	h
	Yes
	Yes
if non-empty

	huge (number)
	5-bytes
+ byte length of string
	H
	Yes
	Yes,
if non-empty

	string
	2-bytes
+ byte length of string
	s
	Yes
	Yes,
if non-empty

	string
	5-bytes
+ byte length of string
	S
	Yes
	Yes,
if non-empty

	array
	2-bytes
+ byte length of string
	a
	Yes
	Yes,
if non-empty

	array
	5-bytes
+ byte length of string
	A
	Yes
	Yes,
if non-empty

	object
	2-bytes
+ byte length of string
	o
	Yes
	Yes
if non-empty

	object
	5-bytes
+ byte length of string
	O
	Yes
	Yes,
if non-empty

	noop
	1-byte
	N
	No
	No

	end
	1-byte
	E
	No
	No

Numeric Types

All numeric types are signed.

floats (32-bit)

All 32-bit float values are written into the binary format using the
IEEE 754 single precision floating point format [http://en.wikipedia.org/wiki/IEEE_754-1985], which is the following
structure:

	Bit 31 (1 bit) – sign

	Bit 30-23 (8 bits) – exponent

	Bit 22-0 (23 bits) – fraction (significand)

doubles (64-bit)

All 64-bit double values are written into the binary format using the
IEEE 754 double precision floating point format [http://en.wikipedia.org/wiki/Double_precision_floating-point_format#Double_precision_binary_floating-point_format], which is the following
structure:

	Bit 63 (1 bit) – sign

	Bit 62-52 (11 bits) – exponent

	Bit 51-0 (52 bits) – fraction (significand)

String Encoding

All string values (which includes huge values since they are string-encoded)
must be UTF-8 [http://en.wikipedia.org/wiki/UTF-8] encoded.

This provides a number of advantages [http://en.wikipedia.org/wiki/UTF-8#Advantages] and inter-compatibility across systems and
alternative data formats.

Arrays & Objects

The length argument specified is the number of child elements the parent
container contains. A child element is defined as:

	in an object, a single name-value pair.

	in an array, a single value.

For example:

	if an array contains 4 integers, the length of that array is 4.

	if an object contains 4 name-value pairs, the length of that object is 4.

	if an array contains 13 User objects, the length of the array is 13.

	if an object contains 7 arrays, the length of the object is 7.

Note

Universal Binary JSON is a streaming-friendly specification
and supports the use of unknown-length container
types if you need them!

Support for ‘huge’ Numeric Type

The huge data type is an ultra-portable mechanism by which arbitrarily long
numbers > 64-bit in size (integer or decimal) can be passed between systems
that support them and degraded gracefully in systems that do not support them.

Note

huge values are only meant to store values > 64-bit in size.
It is in violation of the Universal Binary JSON specification to store a value
<= 64-bits as a huge.

This design was chosen intentionally as it greatly simplifies (and optimizes)
the generation and parsing code for the UBJ format as no introspection of the
huge value is necessary for a platform to try and marshal them into a
smaller format.

This way the parsing code becomes simple, either creating an arbitrarily large
number out of the value (e.g. BigDecimal [http://download.oracle.com/javase/6/docs/api/java/math/BigDecimal.html] in Java), returns an error to the
caller because of an unsupported type or optionally skips the unsupported data
and continues parsing.

huge values must be written out in accordance with the original
JSON number specification [http://json.org].

Many programming languages have native support for arbitrarily large numbers,
but many do not. If you are working in an environment that does not support
numbers > 64-bit numbers, please see our recommendation on handling them in the
Best Practices section.

Optimized Storage Size

All variable-length value types (string, huge, array, object) have a
more compact representation using 1-byte (instead of 4-bytes) for the length
argument when the length value is <= 254.

These more compact types always use the lowercased version of the marker
ASCII char. For example, a for array, s for string and so on.

Warning

When using the compact representations of these different types, remember that
the length must be <= 254 because the length of 255 (0xFF) has a
special meaning when it comes to array and object types.

noop and Streaming Support

The noop type is a general purpose type that has no meaning, but
is mostly commonly used in streaming scenarios where a server must send a client
a keep alive message.

To support this use-case, the specification needed to support a special type
that meant nothing, so a server and client could make use of it without
polluting the actual data that was being exchanged.

Warning

The noop type can be used for other purposes or signals as well, but it is
defined to have no value and no effect on the data it may be included in.

The noop type is meant to be sent between discrete values in a streaming
scenario and can never be sent inside of the byte-data that makes up a single
value.

For example, if a server is writing a string “Hello World” back to the client,
the server must write the entire [s][11][Hello World] sequence back to the
client unbroken; a noop marker cannot be sent inside of that value.

noop markers must only be written between values being transmitted (e.g.
between values in an array or between the name and value pair inside of an
object).

Examples

Please see the Value Types and Container Types sections of the
specification for examples.

 Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Universal Binary JSON 0.8 documentation

Libraries

Below are a list of libraries, by language, that implement the Universal Binary
JSON Specification.

D

	UBJSON for D [https://github.com/adilbaig/ubjsond]

Java

	Universal Binary JSON Java Library [https://github.com/thebuzzmedia/universal-binary-json-java]

.NET

	Ubjson.NET [http://ubjsonnet.codeplex.com/]

Node.js

	node-ubjson [https://github.com/Sannis/node-ubjson]

Python

	simpleubjson [http://code.google.com/p/simpleubjson/]

 Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Universal Binary JSON 0.8 documentation

Thanks

Below is a list of people that have submitted specific contributions,
corrections and implementations to help make the Universal Binary JSON
specification better.

Thank you all!

	Alex Blewitt [http://twitter.com/#!/alblue]

Helped catch a number of specification errors around UTF-8 encoding in the
original draft of the specification that would have been confusing/nasty to
release. He also provided great feedback about the size and performance
metrics for the specification.

	Alexander Shorin [http://code.google.com/p/simpleubjson/]

Alex is both the author of the Python library and a valued collaborator on the
Universal Binary JSON spec as it matured. Alex provided instrumental insight
into the modifications made between Draft 8 and Draft 9 of the spec to help
simplify the spec by removing all the duplicate (compact) type
representations, simplifying the length-arguments for STRING and HUGE as
well as being the one to point out that the length arguments for the ARRAY
and OBJECT container types are effectively useless once the streaming-format
support was added (and do not make generator code or parsing code any easier
or more performant).

	John Cowan [http://tech.groups.yahoo.com/group/json/message/1734]

John was the one that recommended using UTF-8 string-encoded values
(or huge) for arbitrarily huge numbers after seeing my desire to avoid
including any non-portable constructs into the binary format.

Given that the discussion on numeric formats had been a very active one with
lots of feelings on all sides, it was a boon to have John step up with such a
simple suggestion that allowed for maximum compatibility and portability.
It was a win-win all the way around.

	Michael Makarenko [http://www.m1xa.com/] (aka “M1xA”)

Michael is the author behind the Ubjson.NET [http://ubjsonnet.codeplex.com/]
library and contributor of the int16 and float numeric types to the
specification. For numeric-heavy (e.g. scientific) data, the inclusions of the
int16 and float types can lead to significant space savings when writing
out values in the Universal Binary JSON format.

Michael has also gone to great lengths to make the .NET implementation of
UBJSON as tight and performant as possible; collaborating on benchmark design
and testing data as well as compatibility testing between implementations to
ensure a great Universal Binary JSON experience for .NET developers.

In addition to development, Michael has helped contribute to the growth of the
Universal Binary JSON community with
articles about the specification [http://habrahabr.ru/blogs/open_source/130112/].

	Paul Davis [http://davispj.com/]

While approaching the CouchDB team for feedback on the Universal Binary JSON
spec, I met Paul who was willing to spend a significant amount of time
reviewing the specification and recommending suggestions, changes and
improvements from everything the CouchDB team has learned by dealing closely
with JSON for years.

Paul was the brains behind the compacted type presentation
(s, h, a and o) using a single byte instead of 3 bytes to
represent the length of an entity which was something the spec had originally
avoided due to complexity, but as Paul clarified at-scale (e.g. a huge CouchDB
data store) those few bytes in some data sets that are working with very small
values (like string keywords) can really add up.

Paul also pointed out the shortcomings of prefixing the length to the two
container types if the specification could ever be used easily with services
or apps that streamed UBJ format for huge runs of data that the server
couldn’t load, buffer and count ahead of time before responding to the client.
In order to more easily support streaming, unknown-length container types had
to be added.

Paul also pointed out the importance of a NO_OP/SKIP/IGNORE type
that can be useful during a long-lived streaming operation where the server
may be waiting on something (like a DB) and you need to keep the connection
alive between client/server and avoid the client timing out, but you need the
client to know the data it is receiving is just meant as a “Hang on” message
from the server and not actual data. This is where the NO_OP command comes
in handy.

	Stephan Beal [http://tech.groups.yahoo.com/group/json/message/1686]

Stephan helped quite a bit with understanding the implications of a >= 64-bit
numeric format and the implications of portability across a number of popular
platforms.

	JSON Specification Group [http://json.org]

I would like to personally thank everyone in the JSON Specification Group.
The amount of feedback and help with the specification has been wonderful,
constructive and creative. It also lead to one of the busiest conversations
in the last year!

 Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Universal Binary JSON 0.8 documentation

Index

 Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Universal Binary JSON 0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, UBJSON Community.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

