
Universal Binary JSON Documentation
Release 0.9-dev

UBJSON Community

October 13, 2014

Contents

1 Specification 3
1.1 Data Format . 3
1.2 Value Types . 3
1.3 Container Types . 8
1.4 Streaming Types . 11
1.5 Size Requirements . 13
1.6 Endianness . 13
1.7 MIME Type . 13
1.8 File Extension . 14
1.9 Best Practices . 14

2 Type reference 15
2.1 Numeric Types . 15
2.2 String Encoding . 16
2.3 Arrays & Objects . 16
2.4 Support for ‘huge’ Numeric Type . 16
2.5 Optimized Storage Size . 17
2.6 noop and Streaming Support . 17
2.7 Examples . 17

3 Libraries 19
3.1 D . 19
3.2 Java . 19
3.3 .NET . 19
3.4 Node.js . 19
3.5 Python . 19

4 Thanks 21

5 Why UBJSON? 23

6 Why not JSON+gzip? 25

7 Goals 27

8 Indices and tables 29

i

ii

Universal Binary JSON Documentation, Release 0.9-dev

JSON has become a ubiquitous text-based file format for data interchange. Its simplicity, ease of processing and
(relatively) rich data typing made it a natural choice for many developers needing to store or shuffle data between
systems quickly and easy.

Unfortunately, marshaling native programming language constructs in and out of a text-based representations does
have a measurable processing cost associated with it.

In high-performance applications, avoiding the text-processing step of JSON can net big wins in both processing time
and size reduction of stored information, which is where a binary JSON format becomes helpful.

Contents 1

http://json.org

Universal Binary JSON Documentation, Release 0.9-dev

2 Contents

CHAPTER 1

Specification

1.1 Data Format

The Universal Binary JSON specification utilizes a single binary tuple to represent all JSON data types (both value
and container types):

<type, 1-byte char>[<length, 1 or 4-byte integer>][<data>]

Each element in the tuple is defined as:

• type

– A 1-byte ASCII char used to indicate the type of the data following it.

– A single ASCII char was chosen to make manually walking and debugging data stored in the Universal
Binary JSON format as easy as possible (e.g. making the data relatively readable in a hex editor).

• length (OPTIONAL) 1-byte or 4-byte length value based on the type specified. This allows for more aggressive
compression and space-optimization when dealing with a lot of small values.

– 1-byte: An unsigned byte value (0 to 254) used to indicate the length of the data payload following it.
Useful for small items.

– 4-byte: An unsigned integer value (0 to 2,147,483,647) used to indicate the length of the data payload
following it. Useful for larger items.

• data (OPTIONAL) A run of bytes representing the actual binary data for this type of value.

In the name of efficiency, the length and data fields are optional depending on the type of value being encoded. Some
value are simple enough that just writing the 1-byte ASCII marker into the stream is enough to represent the value
(e.g. null) while others have a type that is specific enough that no length is needed as the length is implied by the type
(e.g. int32).

The specifics of each data type will be spelled out down below for more clarity.

The basic organization provided by this tuple (type-length-data) allows each JSON construct to be represented in a
binary format that is simple to read and write without the need for complex/custom encodings or null-termating
bytes anywhere in the stream that has to be scanned for or references resolved.

1.2 Value Types

This section describes the mapping between the 5 discrete value types from the JSON specification into the Universal
Binary JSON format.

3

Universal Binary JSON Documentation, Release 0.9-dev

1.2.1 JSON

The JSON specification defines 7 value types:

• string

• number

• object (container)

• array (container)

• true

• false

• null

Of those 7 values, 2 of them are types describing containers that hold the 5 basic values. We have a separate section
below for looking at the 2 container types specifically, so for the time being let’s only consider the following 5 discrete
value types:

• string

• number

• true

• false

• null

Most of these types have a 1:1 mapping to a primitive type in most popular programming languages (Java, C, Python,
PHP, Erlang, etc.) except for number. This makes defining the types for the 4 easy, but let’s take a closer look at how
we might deconstruct number into its core representations.

Number Type

In JavaScript, the Number type can represent any numeric value where as many other languages define numbers using
3-6 discrete numeric types depending on the type and length of the value being stored. This allows the runtime to
handle numeric operations more efficiently.

In order for the Universal Binary JSON specification to be a performant alternative to JSON, support for these most
common numeric types had to be added to allow for more efficient reading and writing of numeric values.

number is deconstructed in the Universal Binary JSON specification and defined by the following signed numeric
types:

• byte (8-bits, 1-byte)

• int16 (16-bits, 2-bytes)

• int32 (32-bits, 4-bytes)

• int64 (64-bits, 8-bytes)

• float (32-bits, 4-bytes)

• double (64-bits, 8-bytes)

• huge (arbitrarily long, UTF-8 string-encoded numeric value)

Trying to maintain a single number type represented in binary form would have lead to parsing complexity and slow-
downs as the processing language would have to further inspect the value and map it to the most optimal type. By

4 Chapter 1. Specification

http://people.mozilla.org/~jorendorff/es5.html#sec-8.5

Universal Binary JSON Documentation, Release 0.9-dev

pre-defining these different numeric types directly in binary, in most languages the number can stay in their optimal
form on disk and be deserialized back into their native representation with very little overhead.

When working on a platform like JavaScript that has a singular type for numbers, all of these data types (with the
exception of huge) can simply be mapped back to the number type with ease and no loss of precision.

When converting these formats back to JSON, all of the numeric types can simply be rendered as the singular number
type defined by the JSON spec without issue; there is total compatibility!

Value Type Summary

Now that we have clearly defined all of our (signed) numeric types and mapped the 4 remaining simple types to
Universal Binary JSON, we have our final list of discrete value types:

• null

• false

• true

• byte

• int16

• int32

• int64

• float

• double

• huge

• string

Now that we have defined all the types we need, let’s see how these are actually represented in binary in the next
section.

1.2.2 Universal Binary JSON

The Universal Binary JSON specification defines a total of 13 discrete value types (that we saw in the last section) all
delimited in the binary file by a specific, 1-byte ASCII character (optionally) followed by a length and (optionally) a
data payload containing the value data itself.

Some of the values (null, true‘ and false) are specific enough that the single 1-byte ASCII character is enough to
represent the value in the format and they will have no length or data section.

All of the numeric values (except huge) automatically imply a length by virtue of the type of number they are. For
example, a 4-byte int32 always has a length of 4-bytes; an 8-byte double always requires 8 bytes of data.

In these cases the ASCII marker for these types are immediately followed by the data representing the number with
no length value in between.

Because string and huge are potentially variable length, they contain all 3 elements of the tuple: type-length-data.

This table shows the official definitions of the discrete value types:

1.2. Value Types 5

Universal Binary JSON Documentation, Release 0.9-dev

Type Size Marker Length? Data?
null 1-byte Z No No
true 1-byte T No No
false 1-byte F No No
byte 2-bytes B No Yes
int16 3-bytes i No Yes
int32 5-bytes I No Yes
int64 9-bytes L No Yes
float (32-bit) 5-bytes d No Yes
double (64-bit) 9-bytes D No Yes
huge (number) 2-bytes + byte length of string h Yes Yes if non-empty
huge (number) 5-bytes + byte length of string H Yes Yes, if non-empty
string 2-bytes + byte length of string s Yes Yes, if non-empty
string 5-bytes + byte length of string S Yes Yes, if non-empty

Note: The duplicate (lowercased) h and s types are just versions of those types that allow for a 1-byte length (instead
of 4-byte length) to be used for more compact storage when length is <= 254.

With each field of the table described as:

• Type

– The binary value data type defined by the spec.

• Size

– The byte-size of the construct, as stored in the binary format. This is not the value of the length field, just
an indicator to you (the reader) of approximately how much space writing out a value of this type will take.

• Marker

– The single ASCII character marker used to delimit the different types of values in the binary format. When
reading in bytes from a file stored in this format, you can simply check the decimal value of the byte (e.g.
’A’ = 65) and switch on that value for processing.

• Length?

– Indicates if the data type provides a length value between the ASCII marker and the data payload.

– Many of the data types represented in the binary format either don’t have a length (null, true or false) or
their types (e.g. the numeric values) are specific enough that the length is implied.

– When specifying the length for a string or huge value (UTF-8 encoded), the length must represent the
number of bytes of the UTF-8 string and not the number of characters in the string.

Note: For example, English typically uses 1-byte per character, so the string “hello” has a length of 5. The
same string in Russian is “” with a byte length of 12 and in Arabic the text becomes “” with a byte length of 10.

• Data?

– Indicates if the data type provides a data payload representing the value.

– Most types except for null, true and false provide a data payload indicating their value.

– Variable-length types like string and huge do not provide a data payload when they are empty (i.e. length
of 0).More specifically, if you are writing a parser for the Universal Binary JSON format and you encounter
a string of length 0, you know the very next byte is an ASCII marker for another value since the string has
no data payload.

Note: Using Numeric Types

6 Chapter 1. Specification

Universal Binary JSON Documentation, Release 0.9-dev

It is always recommended to use the smallest numeric type that fits your needs. For data with a large amount of
numeric data, this can cut down the size of the payloads significantly (on average a 50% reduction in size).

All numeric types are signed.

Numeric values of infinity are encoded as a null (Z) value. (See ECMA, See JSON presentation)

64-bit Integers

While almost all languages native support 64-bit integers, not all do (e.g. C89 and JavaScript (yet)) and care must be
taken when encoding 64-bit integer values into binary JSON then attempting to decode it on a platform that doesn’t
support it.

If you are fully aware of the platforms and runtime environments your binary JSON is being used on and know they
all support 64-bit integers, then you are fine.

If you are trying to deserialize 64-bit integers in a client’s browser in JavaScript or another environment that does not
support 64-bit integers, then you will want to take care to skip them in the input or have the client producing them
encode them as double or huge values if that is easier to handle.

Alternatively you might consider encoding your 64-bit values as doubles if you know you are going from the server to
a client JavaScript environment with the binary-encoded information.

32-bit Floats

All 32-bit float values are written into the binary format using the IEEE 754 single precision floating point format,
which is the following structure:

• Bit 31 (1 bit) – sign

• Bit 30-23 (8 bits) – exponent

• Bit 22-0 (23 bits) – fraction (significand)

64-bit Doubles

All 64-bit double values are written into the binary format using the IEEE 754 double precision floating point format,
which is the following structure:

• Bit 63 (1 bit) – sign

• Bit 62-52 (11 bits) – exponent

• Bit 51-0 (52 bits) – fraction (significand)

huge Numeric Type

The huge numeric type is a safe and portable way for representing values > 64-bit by way of an UTF-8 encoded string.
The format of this string must adhere to the JSON number specification.

This allows huge numbers to be portable across all platforms and easily converted to/from JSON as well as more
robust handling on platforms that may not support arbitrarily large numbers.

If you are working on a platform that has no support for huge numbers, please see our Best Practices recommendation
on how to handle them.

It is considered a violation of this specification to store numeric values <= 64-bit as a huge.

This decision was made in order to simplify the parsing logic required to process the Universal Binary JSON specifica-
tion; there is no need to introspect huge values to see if they contain smaller numeric values when mapping UBJSON
types to native types of the runtime environment.

The huge type should only be used when you need to (safely and portably) represent values > 64-bit.

UTF-8 Encoding

1.2. Value Types 7

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://json.org/json.ppt
http://wiki.ecmascript.org/doku.php?id=harmony:binary_data_discussion&s=int64
http://en.wikipedia.org/wiki/IEEE_754-1985
http://en.wikipedia.org/wiki/Double_precision_floating-point_format#Double_precision_binary_floating-point_format
http://json.org

Universal Binary JSON Documentation, Release 0.9-dev

The JSON specification does not dictate a specific required encoding, it does however use UTF-8 as the default
encoding.

The Universal Binary JSON specification dictates UTF-8 as the required string encoding. This will allow you to
easily exchange binary JSON between open systems that all follow this encoding requirement.

Fortunately, this is ideal for a multitude of reasons like space efficiency and compatibility across systems and alterna-
tive formats.

To further clarify the binary layout of these data types, below are some visual examples of what the bytes would look
like inside of a binary JSON file.

NOTE: []-block notation is used for readability, the [] characters are not actually written out in the binary format.

Binary Representation Description
[Z] 1-byte, null value
[T] 1-byte, true value
[F] 1-byte, false value
[B][127] 2-bytes, 8-bit byte value of 127
[I][32427] 5-bytes, 32-bit integer value of 32,427
[L][12147483647] 9-bytes, 64-bit integer value of 12,147,483,647
[d][3.14159] 5-bytes, 32-bit float value of 3.14159
[D][72.38138221] 9-bytes, 64-bit double value of 72.38138221
[s][5][hello] 7 bytes, string UTF-8 “hello” (English)
[s][12][] 14 bytes, string UTF-8 “hello” (Russian)
[s][10][] 12 bytes, string UTF-8 “hello” (Arabic)
[S][1024][...long string...] 5 bytes + 1024 bytes for the long string
[s][4][name][s][3][bob] 6 + 5 bytes, equivalent of “name”: “bob”

Now that we have seen how the JSON data value types map to the binary format, in the next section we will see
how we can combine these values together into the two container types (objects and arrays) to create complex object
hierarchies using the Universal Binary JSON format.

1.3 Container Types

In this section we will look at the 2 remaining JSON value types that we are referring to as “container types”, namely
object and array.

1.3.1 JSON

The two JSON container types are described as follows:

• object

– A construct containing 0 or more name-value pairings, where the name is always a string and the value
can be any valid value type including container types themselves.

• array

– A flat list of values only, where the values can by any valid value type including container types themselves.

– The JSON specification does not make it a requirement that the values in an array are all of the same type
and neither does the Universal Binary JSON specification.

Note: Advanced: This can actually be to your benefit. Take for example an array of int64 values, as you are writing

8 Chapter 1. Specification

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8#Advantages

Universal Binary JSON Documentation, Release 0.9-dev

them out to a file or a stream, you can check the actual value of each int64 and depending on the value, encode each
one into the smallest possible numeric type (e.g. byte, int32, etc.).

This can lead to a significant size reduction (say 50% smaller) in smaller numeric values!

Given these two constructs, let’s see how they are modeled in the Universal Binary JSON format.

1.3.2 Universal Binary JSON

The two container types defined by JSON are modeled using the same tuple that defines all of our other data structures
in this specification so far with a minor modification: the length value is considered a count of the child elements the
container holds. It does not mean the byte length of the child elements.

Note: Exactly what child element means depends on the container. In an object, a single child element is a name-value
pair; in an array, a child element is a single value.

More specifically, the tuple stays exactly the same, it is just the meaning of the center length element that changes:

<type, 1-byte char>[<length, 1 or 4-byte integer>][<data>]

All the code used to process the constructs defined by this specification stays the same, but when an object or array
construct are encountered, the code needs to be aware that the length value is the child element count so it can know
when the scope of the container ends.

For example, if you have an object that contains 4 arrays of length 50, the length argument for the object is 4 (because
it contains the four arrays) while the length argument for each array is 50 (because they each hold 50 elements).

Note: Unknown-length container types are also supported by the Universal Binary JSON specification and are covered
in detail in the Streaming section of this document.

Additionally, the only optional field in the tuple for container types is data, if the container is empty and contains no
elements (i.e. the length is 0) then there is no data segment.

All together, the definitions for the object and array container types looks like this:

Type Size Marker Length? Data?
array 2-bytes + byte length of string a Yes Yes, if non-empty
array 5-bytes + byte length of string A Yes Yes, if non-empty
object 2-bytes + byte length of string o Yes Yes if non-empty
object 5-bytes + byte length of string O Yes Yes, if non-empty

Note: array and object can also be specified in a more compact manner using 1-byte for the length when it is <=
254. Specifying a length of 255 for the 1-byte variants has a special meaning of length unknown and is covered in
more detail in the Streaming section of the spec.

The details for each field are the same as described for the non-container values in the previous section with the one
caveat that length is a count of child elements and not the number of bytes representing the contents of the container.

Let’s look at a quick example of encoding an object, again using the handy []-notation we used before simply for
readability (the [] chars are not written out or part of the file format).

Consider the following JSON (30-bytes compacted):

{
"id": 1234567890,
"name": "bob"

}

1.3. Container Types 9

Universal Binary JSON Documentation, Release 0.9-dev

Storing that object in the Universal Binary JSON format would look like this (whitespace added for readability):

[o][2] 2 bytes
[s][2][id][I][1234567890] 4 + 5 = 9 bytes
[s][4][name][s][3][bob] 6 + 5 = 11 bytes

Our Universal Binary JSON format is 22 bytes, 27% smaller than our compacted JSON!

Walking through our example above, using a word-journey this is what a parser might see and do:

1. I see an o, so I know I am parsing an object and that the next byte is the length (or count) for this object.

2. I see a 2, so I know the object contains 2 elements that I must account for to know when the object scope is
closed (because we don’t use the { } brackets like JSON).

3. I see an s, knowing how the name-value pairings inside of an object work, I know this is the name portion of
some upcoming value.

4. I see an I, I know this is an int32 value and that it belongs to the name I parsed in the previous step.

5. I see another s, I know this is a new name-value pair and this is the name portion.

6. I see another s and know this is the value belonging to the name I just processed.

7. I have just parsed 2 values, so now I know the object scope is closed.

Encoding objects containing other objects would work identically except we would have encountered another o or O
marker and descended a level further into a new object.

Let’s look at another example, this time a simple JSON array construct (remember, they only contain values and not
name-value pairs like objects).

This array is 48-bytes in compacted JSON:

[
null,
true,
false,
4782345193,
153.132417549,
"ham"

]

Storing the array in the Universal Binary JSON format would look like this (whitespace added for readability):

[a][6] - 2 bytes
[Z] - 1 byte
[T] - 1 byte
[F] - 1 byte
[I][4782345193] - 5 bytes
[D][153.132417549] - 9 bytes
[s][3][ham] - 5 bytes

Our Universal Binary JSON format is 24 bytes or 50% smaller than the compacted JSON!

Because the container types specify their total child element count, it is easier and faster for parsers to know when
the scope of a container has closed or is still open waiting for more children (e.g. in the case of streaming over the
network). This is not unlike the high-performance Redis protocol.

This also has the added benefit of not needing any terminating values in the binary that need to be scanned for to know
when a container-scope is closed. This way data can be read in chunks and not read-and-scanned byte-by-byte.

As was mentioned previously though, there are some cases where having an unbounded container are important (for
example, streaming content from a server as it generates it on-the-fly).

10 Chapter 1. Specification

http://redis.io/topics/protocol

Universal Binary JSON Documentation, Release 0.9-dev

In the next section we will take a look at the Universal Binary JSON constructs that are optimized for streaming.
Fortunately, there are only 3 and they are just as easy as the constructs we have covered so far!

1.4 Streaming Types

The Universal Binary JSON specification is optimized for fast read-speed by prefixing the byte-length of every con-
struct to the front of it, this allows parsers to digest entire chunks of the data stream at a time without scanning for
terminating byte values.

Unfortunately, this model of data becomes very expensive (and sometimes impossible) to adhere to in a streaming-
friendly environment where a server may be generating UBJ formatted data on-the-fly and streaming it back in real
time to the client.

If the server had to adhere to the prefixed-length requirement of this specification up until now, it would have to
generate, buffer and count all the elements in its reply before writing out the Universal Binary JSON so it could
correctly prefix the lengths to all the containers.

In this section of the specification we look at 1 new additional type to the Universal Binary JSON specification that
compliments our streaming scenario and then two minor changes to the existing container types to enable easy and
efficient streaming with unknown-length support for our array and object containers.

1.4.1 No-Op Type

The noop value stands for No Op or No Operation, it is a specific value (like Z for null, T for true and F for false)
that is useful in streaming scenarios where an acknowledge of life needs to be sent between two end points, but the
confirmation being sent cannot change the meaning of the data it is sent within.

The most common use for such a value type is as a keep-alive signal from a server to the client; letting the client know
the server is possibly operating on a long-running job and is still alive, but just isn’t ready to send more data yet.

The noop type is defined as follows:

Type Size Marker Length? Data?
noop 1-byte N No No

Any parser code written to load the Universal Binary Spec needs to be aware that encountering the N marker in files of
any kind is valid and is merely useful as a signal mechanism from producer to consumer to say “Hey, I am still alive.”,
the marker is intended to be safely ignored if the server or client doesn’t need the acknowledgement.

In order for this keep-alive-esque construct to work, the specification had to define a single byte value that had no
meaning for the server and client to exchange if needed, but caused no modification to the meaning of the data that
they are exchanging.

In code that handles streaming from a server, your handler for the noop type might just reset a disconnect timer. In
code that handles UBJ files, you would simply ignore the noop marker when you encountered it in the file because it
would mean nothing.

Warning: The noop type is only defined to be used inside of an unknown-length container. If you have a container
that clearly defines a child element count (length) it should not contain a noop marker element.
Also, the noop type should never be sent inside of a value (e.g. embedded inside of a string being streamed); it
must only be written to the stream between declared values.

If your interaction with the Universal Binary JSON format is primarily as a file format, it is likely that you may never
need to use the noop type; its value becomes more apparent in long-lived, client-server, data-streaming scenarios.

1.4. Streaming Types 11

Universal Binary JSON Documentation, Release 0.9-dev

1.4.2 Unknown-Length Containers

The Universal Binary JSON specification supports containers (array and object) of unknown length to be specified
when the producer of the binary data cannot (efficiently) know in advance how many elements it is going to write out.

In these cases, the lowercased, 1-byte-length versions of array or object must be used (a or o markers) with a length
value of 0xFF (255) as well as specifying an E terminator character after the last element in the container.

The E type used to delimit the end of unknown-length containers is defined as follows:

Type Size Marker Length? Data?
end 1-byte E No No

Warning: Using a length of 0xFF with the uppercase, 4-byte-length versions of array (A) and object (O) is not
valid according to this specification. You must use the 1-byte-length variants of the container types when specifying
an unknown length.

An example would look like this:

[a][255]
[S][3][bob]
[I][1024]
[T]
[F]
[S][4][ham!]

[E]

The three key elements being the lowercased a marker, the length of 0xFF (255) and the E marker at the end of the
container.

Another example might look like this:

[o][255]
[B][4]
[D][21.786]
[N]
[Z]
[h][27][131.098412283059e2371293452]

[E]

You might notice in the example above we injected a noop instruction right in the middle, before the null. As mentioned
in the No-Op Type section, this is valid and can occur at any time while parsing the contents of an unknown-length
container.

If your parser has no need for recognizing the noop code (e.g. listening for a keep-alive) then it can just be safely
ignored and parsing continued (hence the name “no-op”). It is up to the implementation to decide what to do with the
noop type.

You might be wondering how using a 1-byte E as a terminator to an unbounded container can work and not get confused
with say another E inside of a string, the reason this works is because none of the discrete value types (numeric, string,
etc.) are of unknown length.

The lengths of all the values contained inside of the container are known and must be read completely, doing so will
guarantee that the E is only ever encountered by itself as an element marker which is easily handled by parsing code
to know the scope of the container has been closed.

12 Chapter 1. Specification

Universal Binary JSON Documentation, Release 0.9-dev

1.5 Size Requirements

The Universal Binary JSON specification tries to strike the perfect balance between space savings, simplicity and
performance.

Data stored using the Universal Binary JSON format are on average 30% smaller as a rule of thumb. As you can see
from some of the examples in this document though, it is not uncommon to see the binary representation of some data
lead to a 50% or 60% reduction in size.

The size reduction of your data depends heavily on the type of data you are storing. It is best to do your own
benchmarking with a comprehensive sampling of your own data.

Warning: The Universal Binary JSON specification does not use compression algorithms to achieve smaller
storage sizes. The size reduction is a side effect of the efficient binary storage format.

1.5.1 Size Reduction Tips

The amount of storage size reduction you’ll experience with the Universal Binary JSON format will depend heavily
on the type of data you are encoding.

Some data shrinks considerably, some mildly and some not at all, but in every case your data will be stored in a much
more efficient format that is faster to read and write.

Below are pointers to give you an idea of how certain data may shrink in this format:

• null, true and false values will compress 75% (80% in the case of false)

• large numeric values (> 5 digits < 20 digits) will compress on average 50%.

• string values * of length <= 254 stay the same size. * of length > 254 are 3-bytes bigger per string.

• object and array values compress 1-byte-per-element.

One of the great things about the Universal Binary JSON format is that even though most all your data will be
represented in a smaller footprint, you still get two big wins:

1. A smaller data format means faster writes and smaller reads. It also means less data to process when parsing.

2. Binary format means no encoding/decoding primitive values to text and no parsing primitive values from text.

1.6 Endianness

The Universal Binary JSON specification requires that all numeric values be written in Big-Endian order.

1.7 MIME Type

The Universal Binary JSON specification is a binary format and recommends using the following mime type:

application/ubjson

This was added directly to the specification in hopes of avoiding similar confusion with JSON.

1.5. Size Requirements 13

http://en.wikipedia.org/wiki/Endianness
http://stackoverflow.com/questions/477816/the-right-json-content-type

Universal Binary JSON Documentation, Release 0.9-dev

1.8 File Extension

ubj is the recommended file extension when writing out files using the Universal Binary JSON format (e.g.
user.ubj).

The extension stands for “Universal Binary JSON” and has no known conflicting mappings to other file formats.

1.9 Best Practices

Through work with the community, feedback from others and our own experience with the specification, below are
some of the best-practices collected into one place making it easy for folks working with the format to find answers to
the more flexible portions of the spec.

1.9.1 Handling huge Numbers

Not every language supports arbitrarily long numbers greater than 64-bits (represented by the huge data type), but
many do.

If you are writing a library to read/write Universal Binary JSON and the platform you are working with does not
support them, we recommend throwing an exception or returning an error to the caller, letting them know unsupported
data is contained in the file they are trying to parse.

If the library you are writing is meant to be a general-purpose parser and needs to be more resilient than that, we
recommend the following:

1. Make the default behavior to throw an exception or return an error when the unsupported huge data type is
encountered.

2. Provide an optional behavior to the parser (that must be specifically enabled by the caller) that treats the huge
value as a simple string and returns it to the caller to handle (e.g. insert in a database) if they need it.

3. Provide an optional behavior to the parser (again, that must be specifically enabled by the caller) to simply skip
unsupported values.

This implementation should give the user the most functional experience working with your library and the Universal
Binary JSON format while making it clear on their particular platform some data types could cause trouble; this is
preferred to making the default operation to ignore the unsupported values.

14 Chapter 1. Specification

http://www.fileinfo.com/extension/ubj

CHAPTER 2

Type reference

The table below is a quick-reference for folks working closely with the Universal Binary JSON format that want all
the information at their finger tips:

Type Size Marker Length? Data?
null 1-byte Z No No
true 1-byte T No No
false 1-byte F No No
byte 2-bytes B No Yes
int16 3-bytes i No Yes
int32 5-bytes I No Yes
int64 9-bytes L No Yes
float (32-bit) 5-bytes d No Yes
double (64-bit) 9-bytes D No Yes
huge (number) 2-bytes + byte length of string h Yes Yes if non-empty
huge (number) 5-bytes + byte length of string H Yes Yes, if non-empty
string 2-bytes + byte length of string s Yes Yes, if non-empty
string 5-bytes + byte length of string S Yes Yes, if non-empty
array 2-bytes + byte length of string a Yes Yes, if non-empty
array 5-bytes + byte length of string A Yes Yes, if non-empty
object 2-bytes + byte length of string o Yes Yes if non-empty
object 5-bytes + byte length of string O Yes Yes, if non-empty
noop 1-byte N No No
end 1-byte E No No

2.1 Numeric Types

All numeric types are signed.

2.1.1 floats (32-bit)

All 32-bit float values are written into the binary format using the IEEE 754 single precision floating point format,
which is the following structure:

• Bit 31 (1 bit) – sign

• Bit 30-23 (8 bits) – exponent

• Bit 22-0 (23 bits) – fraction (significand)

15

http://en.wikipedia.org/wiki/IEEE_754-1985

Universal Binary JSON Documentation, Release 0.9-dev

2.1.2 doubles (64-bit)

All 64-bit double values are written into the binary format using the IEEE 754 double precision floating point format,
which is the following structure:

• Bit 63 (1 bit) – sign

• Bit 62-52 (11 bits) – exponent

• Bit 51-0 (52 bits) – fraction (significand)

2.2 String Encoding

All string values (which includes huge values since they are string-encoded) must be UTF-8 encoded.

This provides a number of advantages and inter-compatibility across systems and alternative data formats.

2.3 Arrays & Objects

The length argument specified is the number of child elements the parent container contains. A child element is defined
as:

• in an object, a single name-value pair.

• in an array, a single value.

For example:

• if an array contains 4 integers, the length of that array is 4.

• if an object contains 4 name-value pairs, the length of that object is 4.

• if an array contains 13 User objects, the length of the array is 13.

• if an object contains 7 arrays, the length of the object is 7.

Note: Universal Binary JSON is a streaming-friendly specification and supports the use of unknown-length container
types if you need them!

2.4 Support for ‘huge’ Numeric Type

The huge data type is an ultra-portable mechanism by which arbitrarily long numbers > 64-bit in size (integer or
decimal) can be passed between systems that support them and degraded gracefully in systems that do not support
them.

Note: huge values are only meant to store values > 64-bit in size. It is in violation of the Universal Binary JSON
specification to store a value <= 64-bits as a huge.

This design was chosen intentionally as it greatly simplifies (and optimizes) the generation and parsing code for the
UBJ format as no introspection of the huge value is necessary for a platform to try and marshal them into a smaller
format.

This way the parsing code becomes simple, either creating an arbitrarily large number out of the value (e.g. BigDeci-
mal in Java), returns an error to the caller because of an unsupported type or optionally skips the unsupported data and
continues parsing.

16 Chapter 2. Type reference

http://en.wikipedia.org/wiki/Double_precision_floating-point_format#Double_precision_binary_floating-point_format
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8#Advantages
http://download.oracle.com/javase/6/docs/api/java/math/BigDecimal.html
http://download.oracle.com/javase/6/docs/api/java/math/BigDecimal.html

Universal Binary JSON Documentation, Release 0.9-dev

huge values must be written out in accordance with the original JSON number specification.

Many programming languages have native support for arbitrarily large numbers, but many do not. If you are working
in an environment that does not support numbers > 64-bit numbers, please see our recommendation on handling them
in the Best Practices section.

2.5 Optimized Storage Size

All variable-length value types (string, huge, array, object) have a more compact representation using 1-byte (instead
of 4-bytes) for the length argument when the length value is <= 254.

These more compact types always use the lowercased version of the marker ASCII char. For example, a for array, s
for string and so on.

Warning: When using the compact representations of these different types, remember that the length must be <=
254 because the length of 255 (0xFF) has a special meaning when it comes to array and object types.

2.6 noop and Streaming Support

The noop type is a general purpose type that has no meaning, but is mostly commonly used in streaming scenarios
where a server must send a client a keep alive message.

To support this use-case, the specification needed to support a special type that meant nothing, so a server and client
could make use of it without polluting the actual data that was being exchanged.

Warning: The noop type can be used for other purposes or signals as well, but it is defined to have no value and
no effect on the data it may be included in.
The noop type is meant to be sent between discrete values in a streaming scenario and can never be sent inside of
the byte-data that makes up a single value.
For example, if a server is writing a string “Hello World” back to the client, the server must write the entire
[s][11][Hello World] sequence back to the client unbroken; a noop marker cannot be sent inside of that
value.
noop markers must only be written between values being transmitted (e.g. between values in an array or between
the name and value pair inside of an object).

2.7 Examples

Please see the Value Types and Container Types sections of the specification for examples.

2.5. Optimized Storage Size 17

http://json.org

Universal Binary JSON Documentation, Release 0.9-dev

18 Chapter 2. Type reference

CHAPTER 3

Libraries

Below are a list of libraries, by language, that implement the Universal Binary JSON Specification.

3.1 D

• UBJSON for D

3.2 Java

• Universal Binary JSON Java Library

3.3 .NET

• Ubjson.NET

3.4 Node.js

• node-ubjson

3.5 Python

• simpleubjson

19

https://github.com/adilbaig/ubjsond
https://github.com/thebuzzmedia/universal-binary-json-java
http://ubjsonnet.codeplex.com/
https://github.com/Sannis/node-ubjson
http://code.google.com/p/simpleubjson/

Universal Binary JSON Documentation, Release 0.9-dev

20 Chapter 3. Libraries

CHAPTER 4

Thanks

Below is a list of people that have submitted specific contributions, corrections and implementations to help make the
Universal Binary JSON specification better.

Thank you all!

• Alex Blewitt

Helped catch a number of specification errors around UTF-8 encoding in the original draft of the specification
that would have been confusing/nasty to release. He also provided great feedback about the size and performance
metrics for the specification.

• Alexander Shorin

Alex is both the author of the Python library and a valued collaborator on the Universal Binary JSON spec as
it matured. Alex provided instrumental insight into the modifications made between Draft 8 and Draft 9 of the
spec to help simplify the spec by removing all the duplicate (compact) type representations, simplifying the
length-arguments for STRING and HUGE as well as being the one to point out that the length arguments for the
ARRAY and OBJECT container types are effectively useless once the streaming-format support was added (and
do not make generator code or parsing code any easier or more performant).

• John Cowan

John was the one that recommended using UTF-8 string-encoded values (or huge) for arbitrarily huge numbers
after seeing my desire to avoid including any non-portable constructs into the binary format.

Given that the discussion on numeric formats had been a very active one with lots of feelings on all sides, it
was a boon to have John step up with such a simple suggestion that allowed for maximum compatibility and
portability. It was a win-win all the way around.

• Michael Makarenko (aka “M1xA”)

Michael is the author behind the Ubjson.NET library and contributor of the int16 and float numeric types to the
specification. For numeric-heavy (e.g. scientific) data, the inclusions of the int16 and float types can lead to
significant space savings when writing out values in the Universal Binary JSON format.

Michael has also gone to great lengths to make the .NET implementation of UBJSON as tight and performant
as possible; collaborating on benchmark design and testing data as well as compatibility testing between imple-
mentations to ensure a great Universal Binary JSON experience for .NET developers.

In addition to development, Michael has helped contribute to the growth of the Universal Binary JSON commu-
nity with articles about the specification.

• Paul Davis

While approaching the CouchDB team for feedback on the Universal Binary JSON spec, I met Paul who
was willing to spend a significant amount of time reviewing the specification and recommending suggestions,

21

http://twitter.com/#!/alblue
http://code.google.com/p/simpleubjson/
http://tech.groups.yahoo.com/group/json/message/1734
http://www.m1xa.com/
http://ubjsonnet.codeplex.com/
http://habrahabr.ru/blogs/open_source/130112/
http://davispj.com/

Universal Binary JSON Documentation, Release 0.9-dev

changes and improvements from everything the CouchDB team has learned by dealing closely with JSON for
years.

Paul was the brains behind the compacted type presentation (s, h, a and o) using a single byte instead of 3 bytes
to represent the length of an entity which was something the spec had originally avoided due to complexity, but
as Paul clarified at-scale (e.g. a huge CouchDB data store) those few bytes in some data sets that are working
with very small values (like string keywords) can really add up.

Paul also pointed out the shortcomings of prefixing the length to the two container types if the specification
could ever be used easily with services or apps that streamed UBJ format for huge runs of data that the server
couldn’t load, buffer and count ahead of time before responding to the client. In order to more easily support
streaming, unknown-length container types had to be added.

Paul also pointed out the importance of a NO_OP/SKIP/IGNORE type that can be useful during a long-lived
streaming operation where the server may be waiting on something (like a DB) and you need to keep the
connection alive between client/server and avoid the client timing out, but you need the client to know the data it
is receiving is just meant as a “Hang on” message from the server and not actual data. This is where the NO_OP
command comes in handy.

• Stephan Beal

Stephan helped quite a bit with understanding the implications of a >= 64-bit numeric format and the implica-
tions of portability across a number of popular platforms.

• JSON Specification Group

I would like to personally thank everyone in the JSON Specification Group. The amount of feedback and
help with the specification has been wonderful, constructive and creative. It also lead to one of the busiest
conversations in the last year!

22 Chapter 4. Thanks

http://tech.groups.yahoo.com/group/json/message/1686
http://json.org

CHAPTER 5

Why UBJSON?

Attempts to make using JSON faster through binary specifications like BSON, BJSON or Smile exist, but have been
rejected from mass-adoption for two reasons:

• Custom (Binary-Only) Data Types: Inclusion of custom data types that have no ancillary in the original JSON
spec, leaving room for incompatibilities to exist as different implementations of the spec handle the binary-only
data types differently.

• Complexity: Some specifications provide higher performance or smaller representations at the cost of a much
more complex specification, making implementations more difficult which can slow or block adoption. One of
the key reasons JSON became as popular as it did was because of its ease of use.

BSON, for example, defines types for binary data, regular expressions, JavaScript code blocks and other constructs that
have no equivalent data type in JSON. BJSON defines a binary data type as well, again leaving the door wide open
to interpretation that can potentially lead to incompatibilities between two implementations of the spec and Smile,
while the closest, defines more complex data constructs and generation/parsing rules in the name of absolute space
efficiency.

The existing binary JSON specifications all define incompatibilities or complexities that undo the singular tenant that
made JSON so successful: simplicity.

JSON’s simplicity made it accessible to anyone, made implementations in every language available and made explain-
ing it to anyone consuming your data immediate.

Any successful binary JSON specification must carry these properties forward for it to be genuinely helpful to the
community at large.

This specification is defined around a singular construct used to build up and represent JSON values and objects.
Reading and writing the format is trivial, designed with the goal of being understood in under 10 minutes (likely less
if you are very comfortable with JSON already).

Fortunately, while the Universal Binary JSON specification carriers these tenants of simplicity forward, it is also
able to take advantage of optimized binary data structures that are (on average) 30% smaller than compacted JSON
and specified for ultimate read performance; bringing simplicity, size and performance all together into a single
specification that is 100% compatible with JSON.

23

http://bsonspec.org
http://bjson.org
http://wiki.fasterxml.com/SmileFormat
https://issues.apache.org/jira/browse/COUCHDB-702
http://bsonspec.org/#/implementation
http://wiki.fasterxml.com/SmileFormatSpec
http://wiki.fasterxml.com/SmileFormatSpec

Universal Binary JSON Documentation, Release 0.9-dev

24 Chapter 5. Why UBJSON?

CHAPTER 6

Why not JSON+gzip?

On the surface simply gzipping your compacted JSON may seem like a valid (and smaller) alternative to using the
Universal Binary JSON specification, but there are two significant costs associated with this approach that you should
be aware of:

1. At least a 50% performance overhead for processing the data.

2. Lack of data clarity and inability to inspect it directly.

While gzipping your JSON will give you great compression, about 75% on average, the overhead required to read/write
the data becomes significantly higher. Additionally, because the binary data is now in a compressed format you can no
longer open it directly in an editor and scan the human-readable portions of it easily; which can be important during
debugging, testing or data verification and recovery.

Utilizing the Universal Binary JSON format will typically provide a 30% reduction in size and store your data in a
read-optimized format offering you much higher performance than even compacted JSON. If you had a usage scenario
where your data is put into long-term cold storage and pulled out in large chunks for processing, you might even
consider gzipping your Universal Binary JSON files, storing those, and when they are pulled out and unzipped, you
can then process them with all the speed advantages of UBJ.

As always, deciding which approach is right for your project depends heavily on what you need.

25

http://www.cowtowncoder.com/blog/archives/2009/05/entry_263.html

Universal Binary JSON Documentation, Release 0.9-dev

26 Chapter 6. Why not JSON+gzip?

CHAPTER 7

Goals

The Universal Binary JSON specification has 3 goals:

1. Universal Compatibility

Meaning absolute compatibility with the JSON spec itself as well as only utilizing data types that are natively
supported in all popular programming languages.

This allows 1:1 transforms between standard JSON and Universal Binary JSON as well as efficient representa-
tion in all popular programming languages without requiring parser developers to account for strange data types
that their language may not support.

2. Ease of Use

The Universal Binary JSON specification is intentionally defined using a single core data structure to build up
the entire specification.

This accomplishes two things: it allows the spec to be understood quickly and allows developers to write trivially
simple code to take advantage of it or interchange data with another system utilizing it.

3. Speed / Efficiency

Typically the motivation for using a binary specification over a text-based one is speed and/or efficiency, so
strict attention was paid to selecting data constructs and representations that are (roughly) 30% smaller than
their compacted JSON counterparts and optimized for fast parsing.

27

http://ubjson.org

Universal Binary JSON Documentation, Release 0.9-dev

28 Chapter 7. Goals

CHAPTER 8

Indices and tables

• genindex

• search

29

	Specification
	Data Format
	Value Types
	Container Types
	Streaming Types
	Size Requirements
	Endianness
	MIME Type
	File Extension
	Best Practices

	Type reference
	Numeric Types
	String Encoding
	Arrays & Objects
	Support for ‘huge’ Numeric Type
	Optimized Storage Size
	noop and Streaming Support
	Examples

	Libraries
	D
	Java
	.NET
	Node.js
	Python

	Thanks
	Why UBJSON?
	Why not JSON+gzip?
	Goals
	Indices and tables

